Aufgaben Integralrechnung 2

- 1. Bestimme die Fläche, welche die Funktion $y = -2x^3 2x^2 + x 4$ in den Grenzen von 3 bis 5 einschließt.
- 2. Berechne die Fläche, welche die Funktionen $f_{(x)} = x^3$ und $g_{(x)} = -x^2 + 2x$ einschließt.
- 3. Die Wachstumsgeschwindigkeit einer Schlangenart verläuft nach der Funktion $v_{(t)} = t^3 6t^2 + 9t$ Trage auf die $Y - Achse \ v_{(t)}$ in dm/Jahr und auf die X - Achse die Zeit in Jahren auf.
 - a) Wann hat die Schlange ihre größte Wachstumsgeschwindigkeit?
 - b) Wann hat die Schlange eine Wachstumsgeschwindigkeit von 2 dm/Jahr?
 - c) Welche Wachstumsgeschwindigkeit hat die Schlange nach 1,5 Jahren?
 - d) Nach wie vielen Jahren wächst die Schlange praktisch nicht mehr?
 - e) wie lang ist die Schlange nach
 - f) einem Jahr
 - g) zwei Jahren
 - h) drei Jahren
- 4. Zur Zeit t=0 in Minuten wird das Einlassventil eines Rohres geöffnet. Während der ersten beiden Minuten steigt die momentane Durchflussgeschwindigkeit $d_{(t)}$ linear an. Nach 2 Minuten schaltet ein Begrenzerventil ein, welches den weiteren Anstieg verringert. Es gilt folgende Tabelle.

t in Minuten	0	1	2	3	4
dt in m³/s	0	5	10	13,75	15

In der Zeit von 0 bis 2 Minute soll die Funktion linear ansteigen, in der Zeit 2 bis 4 Minuten soll die Funktion quadratisch verlaufen.

Bestimme die Wassermenge nach 4 Minuten.

Hinweis: $d_{(t)}$ ist in m³/s angegeben und t in min